
Applications with R and
Docker

Scott Came
Principal
Cascadia Analytics LLC

useR! 2018 - Brisbane, Queensland, Australia - July 10, 2018

Welcome - About Me
● Cascadia Analytics
● Data Science Interests: Justice System, Elections, Social Media and Disinformation, Sport
● Using Docker for almost 3 years
● My hometown:

● Olympia, Washington, USA
● 11,753 great circle km from Brisbane
● State Capital
● Population: 280,588 (Thurston

County, 2017)
● 1 hr S of Seattle
● 2 hr N of Portland
● 1 hr E of Pacific Coast

Welcome - About you

Please tell us:

● Who you are

● Where you’re from

● Either:
○ A cool thing you’ve accomplished with Docker, or

○ One thing you’d like to know how to do in three hours that you aren’t comfortable doing now

○ (Or both!)

Tutorial Plan

● Docker Basics
● R on Docker and the rocker

project
● Docker Architecture
● Docker Networking and Storage
● Scaling applications with Docker

Swarm
● Designing multi-container

applications
● Using R and Docker together for

reproducibility
● Open lab

Takeaways

● Understand Docker components
and how they work together

● Understand “the Docker way”
● See how to add backend database

and frontend authentication to
Shiny with Docker

● Explore useful tools like Play With
Docker and AWS

● Explore Docker runtimes to take
advantage of hardware like GPUs

● Have basic building blocks you can
use on your own applications

Environment Setup Preliminaries
● Docker for Mac / Windows / Linux

○ Nothing to do!
○ Verify setup: docker --version
○ For cli options: docker --help
○ Recommend stopping existing containers

● Docker Toolbox
○ VirtualBox (should be installed already)
○ Recommend creating a fresh Docker

machine for today

docker-machine create --driver virtualbox useR-vm
docker-machine env useR-vm << (and follow directions)

Exercise:
1. What version of Docker are

you running?
2. How much memory is

available to the Docker
daemon?

3. How many images are in
your local registry?

● Also might want to install jq: https://stedolan.github.io/jq/

https://stedolan.github.io/jq/

Alternative: PWD
● Magic of “dind” (Docker-in-Docker)
● DockerCon17 demo and discussion:

https://dockr.ly/2yLyfpH
● If you go this route:

○ Note ssh link at top of instance page
○ Public IP of the running instance is same

as ssh address, just replace ‘@’ with ‘.’

● Goes without saying:
○ Not secure
○ Data are not persisted
○ Sessions only last 4 hours

● Still really cool!
https://labs.play-with-docker.com/

https://dockr.ly/2yLyfpH
https://labs.play-with-docker.com/

Docker Basics

● Docker is a tool for running Linux processes in an isolated or “sandbox”
environment

● Process and its context is defined in an image
● An instance of an image is a container
● Images inherit FROM a parent image (ultimately, scratch)
● Images reside in registries

○ You can build images locally (based on code in a Dockerfile) and store them in your local
registry

○ You can push images to remote registries (including DockerHub)
○ You can pull images from remote registries (especially DockerHub)

● You can run a container from an image (if the container does not exist in the
local environment, Docker will automatically pull it for you)

Docker Basics

docker run [options] image [executable]

Most common:

-i: keep STDIN open
-t: attach a tty
-d: detach/daemon
-P: expose a port
-p: map a port
-v: mount a volume
--name: container name
--network: network name
--rm: remove container
when it exits
--mount: more powerful
volume mounting

● Image to execute
● Pulled if not available

Optional. Will run the ENTRYPOINT and/or CMD specified
in Dockerfile but this can override. More later.

[repo]/image[:tag] If no repo, assumed local registry
If no tag, assumed “latest”

Interactive vs detached

● Pass options -it to docker run for containers that will result in an interactive
shell or application (like R console)

● Pass option -d to docker to run “detached” or in “daemon” mode; this is for
networked services to which clients/browsers will connect (like RStudio server
or Shiny server)

● You can also run networked services with the -t option. Logs will be streamed
to stdout, but the service will die when you kill the tty

R Images

● For R environments / applications, consider the
rocker project images the default

● https://hub.docker.com/u/rocker/
● https://github.com/rocker-org/rocker
$ docker run -it --rm rocker/r-ver:3.5.0 R

R version 3.5.0 (2018-04-23) -- "Joy in Playing"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

https://hub.docker.com/u/rocker/
https://github.com/rocker-org/rocker

Docker Basics - Exercises

Exercises:

1. Bring up an interactive R 3.5.0 prompt using Docker
2. Bonus: bring up an interactive R version 1.1.1 prompt (hint: docker

search scottcame and look for something old).
3. Using the same image from #1, bring up a Linux interactive shell.

What Linux distribution are we running?
4. Bring up RStudio Server in Docker and access the application via your

browser. Did you choose a port?

Note: for #1, #3, and #4, just use Rocker project images for now.

Other useful commands
● ps: list running containers (pass option -a to see non-running ones too)
● inspect [container]: info about a container
● stats: real-time info on container resource usage
● images: list all the images in the Docker environment
● diff [container]: what has changed in a container since it started
● container prune: remove all stopped containers

 Caution!

Be careful with docker container prune and
docker run … --rm …

Any state in the container filesystem goes away when
it’s removed. Better yet: stateless containers!

Modifying running containers

● exec: run another command in the container
● cp: copy host files to/from container

 Caution!

These commands are great when developing/testing an
image. But: If you do either in a production container,
you are likely doing it wrong!

Containers should be immutable and their creation
should be entirely defined by the Dockerfile.

Remember: containers are not virtual machines!

So...are containers just little virtual machines?

How Containers are like VMs:

● Isolated Linux distro and
filesystem

● Easy to package and replicate
● Portable across hosts
● Scale by deploying on more

powerful hardware
● Run networked services on

defined ports

Why Containers are not VMs:

● Container isolation is an artifact
of namespaces

● Everything is ultimately a
process running in same Linux
kernel

● No simulation of hardware
● Docker is not running any

code...just setting up processes

docker run -it --privileged --pid=host ubuntu nsenter -t 1 -m -u -n -i shFun and instructive:

https://blog.docker.com/2016/03/containers-are-not-vms/ Good explanation:

https://blog.docker.com/2016/03/containers-are-not-vms/

Linux H
ost

(V
M

 or m
etal)

The Docker Stack

Mac OS (El Capitan+)Native OS Windows (10 / 2016) Other non-Linux

HyperKit*VM Hyper-V Oracle VirtualBox

LinuxKit* / AlpineLinux LinuxKit* / Alpine boot2docker

containerd*Supervisor

shim + runC*Runtime

Container

Shim

- cgroups
- namespaces

Container

Shim

- cgroups
- namespaces

Container

Shim

- cgroups
- namespaces

Container

Shim

- cgroups
- namespaces

Image Registry

* Moby project components

do
ck

er
d

Container processes

C
on

ta
in

er

C
on

ta
in

er

C
on

ta
in

er

C
on

ta
in

er

Li
nu

x

Docker Remote API

Docker daemon
(containerd)Remote API

https://docs.docker.com/engine/api/v1.37/

Unix socket (Docker for Mac, Linux)

Named Pipe (Docker for Windows)

Encrypted TCP socket (2376) (Docker Machine)

Docker CLI

SDK

http clients REST over http

$ docker run --rm -it \
> --mount "type=bind,source=/var/run/docker.sock,target=/var/run/docker.sock" \
> ubuntu bash
$ apt-get update && apt-get install -y curl jq
$ curl --unix-socket /var/run/docker.sock http://localhost/info | jq .

In-container:

Docker for Mac:

$ curl --unix-socket /var/run/docker.sock http://localhost/info | jq .

$ curl --insecure --cert ~/.docker/machine/machines/useR-vm/cert.pem --key \
> ~/.docker/machine/machines/useR-vm/key.pem https://$(docker-machine ip useR-vm):2376/info | jq .

Docker Machine:

https://docs.docker.com/engine/api/v1.37/

Using the Docker API from R
Exercise:

In an interactive R container, use the Docker API to create a data frame (or tibble) with one row for
each image in your local registry.

How many of your local images have ‘shiny’ in their tagged name?

 Hints:

● The rocker/tidyverse image conveniently includes jsonlite and httr
● httr config option unix_socket_path connects to socket rather than normal http URL
● The RepoTags attribute contains all the image’s tag names, and this list column can be

unnested with tidyr::unnest()

We will learn more about bind mounts shortly. For now, just know that to mount a file from the Docker host into a container, use the mount
option to docker run :
--mount "type=bind,source=/var/run/docker.sock,target=/var/run/docker.sock"

Registry

Populating Image Registries: Dockerfiles
Dockerfile

docker build Image

Container docker run

● FROM: Specify base image
● LABEL: Metadata
● ADD/COPY: Set up container

filesystem from context
● ENV: Set environment

variables

● EXPOSE: Document ports
● VOLUME: Specify volume

mount points
● ENTRYPOINT/CMD: Specify

process command and args to
run in container

+ context

Dockerfile Examples

https://github.com/scottcame/shiny-docker-demo/blob/master/docker/tidyverse-mariadb/Dockerfile

https://github.com/rocker-org/rocker-versioned/blob/master/rstudio/3.5.0/Dockerfile

https://github.com/scottcame/shiny-docker-demo/blob/master/docker/tidyverse-mariadb/Dockerfile
https://github.com/rocker-org/rocker-versioned/blob/master/rstudio/3.5.0/Dockerfile

Specifying what process to run

CMD versus ENTRYPOINT

● ENTRYPOINT defines the executable run within the process
● CMD defines arguments to the ENTRYPOINT executable, or executable if no

ENTRYPOINT specified
● CMD is overridden by any args passed to docker run (at the end)
● ENTRYPOINT can be overridden by --entrypoint option to docker run
● Specify both as arrays (best practice)

One Service? Or Many?

● CMD / ENTRYPOINT
defines the “actual”
process of interest

● No child processes
spawned by that process

● CMD / ENTRYPOINT
defines a “supervisor” that
launches other services

● Options include
supervisord, S6 overlay, or
even sysvinit or systemd

● Modular, cleaner design
● Generally, better scalability with Docker

compose and Swarm
● Greater granularity for leveraging cgroups

to optimize cpu, memory, I/O, etc.

Image source: https://pxhere.com/en/photo/161681 (Creative Commons CC0)

● No need for compose or other
orchestration specs to deploy
multi-process applications

● Easier migration from existing VM-based
appliances

Advantages: Advantages:

https://pxhere.com/en/photo/161681

Common R Image Task: Installing Packages

Exercise:
Build a Docker image that provides
RStudio with the lubridate
package pre-installed.

How much did this add to the size
of the base RStudio image?

 Tip:

Build image in an interactive bash shell in
the base image. Then use the history
command to retrace your steps (and
build your RUN instructions).

Image Layers and the Cache
● docker build caches the

results of each instruction
● The cache key is the text of

the instruction, not the results
● Only one copy of each layer

is stored in a registry
● Good ref:

https://docs.docker.com/v17.
09/engine/userguide/storage
driver/imagesandcontainers/

Each container has a container-specific layer on top of the image layers. This is its size

https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/v17.09/engine/userguide/storagedriver/imagesandcontainers/

Documenting your image

● LABEL instruction specifies
metadata for an image

● Reported with docker image
inspect

● Consider using label-schema:
http://label-schema.org/rc1/

● Most common labels:
○ maintainer
○ description
○ name
○ vcs-url

FROM mariadb

LABEL maintainer="Scott Came (scottcame10@gmail.com)" \
 org.label-schema.description="Image with MariaDB ..." \
 org.label-schema.vcs-url="https://github.com/..."

ENV MYSQL_ALLOW_EMPTY_PASSWORD=yes

COPY files/* /docker-entrypoint-initdb.d/

$ docker image inspect demo-mariadb | jq .[0].Config.Labels
{
 "maintainer": "Scott Came (scottcame10@gmail.com)",
 "org.label-schema.description": "Image with MariaDB ...",
 "org.label-schema.vcs-url": "https://github.com/..."
}

http://label-schema.org/rc1/

Pushing to DockerHub and Tagging

$ docker build -t [DH user]/[image name]:[tag] If you don’t specify, tag = “latest”

Becomes relevant if you push

$ docker push [DH user]/[image name]:[tag]

To make image available on DockerHub:

Note: need account and prior docker login

$ docker tag [image name]:[tag] \
 [DH user]/[image name]:[tag]

To tag an existing image:

Docker Volumes
 Caution!

Data stored in a container’s writable layer (i.e., filesystem) is lost when the container is removed!!

Persistent data must be managed in volumes.

Image Source: docker.com

Mounting Volumes

● Two options via docker run parameters: -v and --mount
● Consider favoring --mount (more powerful/flexible)
● Available host directories for bind mounts is a Docker daemon config

docker run --mount type=type,source=source,target=target ...

bind: specific host directory
volume: docker-managed volume
tmpfs: use for non-persistent data For bind: host directory

For volume: volume name

Path in containerdocker volume create

docker volume rm

docker volume inspect

Create new volume

Delete named volume

Get volume info Volumes are stored in host filesystem at
/var/lib/docker/volumes/[name]

Mounting Volumes: Exercise

Exercise:

Mount a bind volume into a base ubuntu image, create a file
in the container directory, and exit the container. Do you
see your file?

Now do the same with a volume mount. Do you see the file
now? (Hint for Docker for Mac users: where is the “host”?)

Docker Networking

● Outside of swarms, containers live
in bridge networks

● Swarms use overlay networks to
connect containers across hosts

● Containers can only communicate
within their network(s)

● All ports exposed within network,
but only explicitly exposed ports are
available on the host IP (i.e., to the
external network)

● Automatic DNS by container name
(but only on user-created networks)

Docker Host, bridge network n1

Container:
mariadb

Running on port 3036 (not exposed)

Container:
rstudio

Running on port 80 (exposed)

$ docker network create n1
$ docker run … --network n1 …

Host iptables

Bridge networks

Default bridge (“bridge”) User-defined bridge User-defined bridge ...

C1 C2 C3

Host interface (e.g., eth0)

-p 80:80

80

C4 C5 C6

-p 81:80

81

Reachable by IP
only...no DNS on the

default bridge!

C7 C8 C9

Reachable by name
(container name) or IP

This all happens through the magic of network namespaces in the Linux kernel (plus routing
configuration in iptables)

● Docker for Mac and
Windows expose ports on
Mac/Windows interfaces

● Docker Machine exposes
ports on the Virtual Box VM
interface by default

Specifying a network

● If you run a container without specifying a network, the container will run on
the (default) bridge network, named bridge

● To specify a network, first create one:

$ docker network create --subnet 172.25.2.0/24 n1

Network nameOptional subnet definition (CIDR)

● Then to run a container on a network, pass network name as --network option:

$ docker run -d --network n1 -p 8787:8787 --name rstudio rocker/rstudio

Inspecting a network Choosing subnets
● Let Docker choose if possible
● Always choose private network
● Based on other networks to which the

host belongs
● On Mac/Linux:

● Private networks:
○ A: 10.0.0.0/8 (16,777,216)
○ B: 172.16.0.0/12 (1,048,576)
○ C: 192.168.0.0/16 (65,536)

● Slash-number indicates number of
mask bits (increase to create smaller
subnets)

Networking: Exercise

 Exercise:

1. Create a bridge network (feel free to specify a subnet if you want) named nw-useR .
2. Run a (detached) RStudio Server container on this network, exposing the standard RStudio

Server port (8787) on host port 80. Use an RStudio Server image that has package RMariaDB
pre-installed (hint: scottcame/tidyverse-mariadb). Name the container rstudio .

3. Run a (detached) MariaDB container on this network. Use the image
scottcame/demo-mariadb. (Note that the root user password is blank in this database.)
Name the container demo-mariadb .

4. Open RStudio (running in the server) in your browser, and load the contents of table t1A (in
database demo1) into a data frame.

5. Bonus: Note that the scottcame/demo-mariadb image also contains all the mysql client tools.
Can you demonstrate that a mysql client container, running on the default bridge network,
cannot connect to the MariaDB server, but a mysql client container running on the nw-useR
network can?

Swarm mode and scaling containers

Overlay network (“swarm”)

Node M (manager)Image

C1

C2

Node W1 (worker)

C3

Node W2 (worker)

C4

● Swarm mode creates a cluster of Docker hosts
● A swarm has 1..* manager nodes and 0..* worker

nodes
● Nodes can be (and generally are) separate

physical or virtual machines (hosts)
● Nodes are connected by a Docker overlay network

(secure virtual LAN)
● Any exposed container ports are available on any

node, and traffic is load balanced automatically
● Collection of load-balanced containers is called a

“service”
● Guaranteed availability of n instances

$ docker swarm init Init swarm, current engine becomes manager

$ docker service create ... \
 --replicas 4

$ docker swarm join ... Join a node to the swarm

Create a service:
● Options mostly the same as docker

run
● Specify number of instances with

--replicas

Swarm exercise

 Exercise:

1. Option 1: clone (or fork+clone) https://github.com/scottcame/shiny-docker-demo and build
the docker image in the docker/shiny directory

2. Option 2: pull the docker image scottcame/shiny from DockerHub

Then:

1. Run a container from this image, exposing port 3838 (the standard Shiny port), and bring up
the hostinfo Shiny app (should be at http://[localhost or ip]:3838/hostinfo)

2. Init a one-node Swarm in your current Docker engine
3. Now run the container as a service in Swarm mode, with 3 replicas (or scale the one you just

created). What do you see when you refresh the page over and over?

https://github.com/scottcame/shiny-docker-demo

Multi-container applications

Shiny application

Database

User Directory (LDAP)

Proxy Server (Apache)

Service Provider
(shibd)

Identity Provider
(shib idp)

SAML We start with users who want to analyze data in a database.

So we add a Shiny application. But what about security?

...and an LDAP directory...

...and some SAML infrastructure to handle federated login.

So we add an Apache proxy server...

All as Docker containers! But how do we make sure we
have all the pieces, without manually starting all these
containers?

Docker Compose

● Define and run multi-container
applications

● Controlled by a “compose file”
written in YAML

● Compose file defines services,
and the networks and volumes
that they use

● Can build images before
instantiating containers

● Compose files can be
hierarchical

$ docker-compose -f cf.yaml up -d
$ docker-compose -f cf.yaml down

< Start services in background
< Stop and remove services

A Minimal Docker Compose Example

version: "3.5"

services:
 rstudio:
 image: scottcame/tidyverse-mariadb
 container_name: rstudio
 ports:
 - 8787:8787

Map of strings Mapped sequence

Spaces (soft tabs)
\t is illegal in YAML

Docker Compose: Exercise

 Exercise:

1. Remove the network nw-useR and containers rstudio and demo-mariadb .
2. Using the Compose File Reference (https://docs.docker.com/compose/compose-file/) to help,

replicate the prior exercise using Docker Compose.
3. This time, bind-mount a volume into the RStudio Container into which you can save some

results of your RStudio session after the container dies.
4. Take down the compose application.
5. Do you see your session output stored in the volume source?

https://docs.docker.com/compose/compose-file/

Securing Shiny Apps with Docker

Shiny application

Database

User Directory (LDAP)

Proxy Server (Apache)

Service Provider
(shibd)

Identity Provider
(shib idp)

SAML
Goals:

● Use SAML to secure access to
shiny-server

● Make authenticated user information
available to Shiny apps via session
parameter to server function

A Diversion into SAML

● Security Assertion Markup Language
● Used for sharing assertions (claims)

about users between relying parties
and identity providers. Claims are
mostly about:

○ Authentication (this user demonstrated her
identity via this mechanism at this
date/time)

○ Attributes (the user who authenticated has
this set of known attributes/facts)

● OASIS standard (stable at version 2.0
since 2005)

Image source:
https://en.wikipedia.org/wiki/File:Saml2-browser-sso-redirect-post.png

Common to use LDAP for this

A SAML Assertion

https://github.com/scottcame/shiny-docker-demo/blob/master/shiny-app/shiny/example-assertion.xml

https://github.com/scottcame/shiny-docker-demo/blob/master/shiny-app/shiny/example-assertion.xml

Shibboleth: Open Source SAML Implementation

LDAP

Identity Provider

● Java web application
● Configuration (mostly xml) to:

○ Specify which SAML profiles
you want to support
(relying-party.xml)

○ Mapping of user attributes
from source (LDAP) to
assertion

○ How to connect to LDAP
source

SAML Metadata

Service Provider

● Apache httpd module
● Configuration (mostly xml) to:

○ Manage sessions
○ How to make assertions/info

available to backend app
○ Common method of assertion

access is via http
(session-specific URL)

○ Mapping of attributes
○ Proxy instructions

Web application
(shiny-server)

User’s Web Browser
(via http redirects)

Multi-container shiny app in action!

Exercise:

Use docker-compose to run the complete application. See if you can
navigate the image source to determine the login username (all passwords
are “password”).

Spend a few minutes exploring the compose file and image source, and
also explore the running containers.

Note: you can clone my shiny-docker-demo repo from github and build all
the images, or just grab the compose file at
https://github.com/scottcame/shiny-docker-demo/blob/master/docker/d
ocker-compose.yaml.

Warning: the shiny-apache-shib-sp image takes forever to build.

https://github.com/scottcame/shiny-docker-demo/blob/master/docker/docker-compose.yaml
https://github.com/scottcame/shiny-docker-demo/blob/master/docker/docker-compose.yaml

Scaling multi-container applications
● Scaling compose applications is straightforward...in theory

○ docker stack deploy is mostly equivalent to
docker-compose up -d

○ In compose file, each service can have a deploy section to
control Swarm deployment

○ The deploy section takes, among other options, a replicas
option

● Unfortunately Shiny doesn’t like something about this setup
● Sticky sessions

Docker and Reproducibility

From http://ropensci.github.io/reproducibility-guide/sections/introduction/ :

http://ropensci.github.io/reproducibility-guide/sections/introduction/

Docker Advantages for Reproducibility

● Smaller footprint

● Easier deployment

● Easier sharing and publication

● Open source platform

● Standard scripting of image setup with Dockerfile

● Rocker images as baseline

Reproducibility components

Context

● R version
● R packages
● Database software
● Etc.

● Defined in Dockerfile
● Definition managed in

source control (e.g.,
GitHub)

● Stored in registry
(e.g., DockerHub)

● Versioned via tags

Data

● CSV/json/XML
● Serialized data frame
● API endpoint

Options
● Access from source**
● Build into image
● Store in version

control (e.g., GitHub*)

Pipeline

● R scripts
● Markdown/notebooks
● Shell scripts, etc.

Options
● Manage in version

control (e.g., GitHub*)
and pull at runtime

● Build into image

Results Volume * Cite commit hash if possible
** Consider publishing SHA256 hash

Simple example
Context
FROM rocker/geospatial:3.5.0

VOLUME /output

RUN apt-get update && apt-get install -y curl
RUN R -e 'install.packages(c("ggthemes"))'
RUN cd /tmp && \
 curl -O https://raw.githubusercontent.com/scottcame/shiny-docker-demo/master/australia-elex-2016/Notebook.Rmd

CMD ["R", "-e", "rmarkdown::render('/tmp/Notebook.Rmd', output_file='/output/Notebook.html')"]

Data: https://data.world/scottcame/australian-federal-election-2016

Pipeline: https://github.com/scottcame/shiny-docker-demo/blob/master/australia-elex-2016/Notebook.Rmd

https://data.world/scottcame/australian-federal-election-2016
https://github.com/scottcame/shiny-docker-demo/blob/master/australia-elex-2016/Notebook.Rmd

Context

Machine learning example

Base Image

r-keras-cuda-base

CPU Version

r-keras-cuda-default

GPU Version

r-keras-cuda-gpu

https://github.com/scottcame/docker/wiki/AWS-EC2-ML-instance-setup

Data and Pipeline: https://github.com/rstudio/keras/tree/master/vignettes/examples

Images in my docker github repo: https://github.com/scottcame/docker
(and on DockerHub, of course)

https://github.com/scottcame/docker/wiki/AWS-EC2-ML-instance-setup
https://github.com/rstudio/keras/tree/master/vignettes/examples
https://github.com/scottcame/docker

Open Lab

We can:

● Follow up on anything from the tutorial that you’d like to
explore in more depth

● Talk about other uses of Docker
● Hear about how you plan to use Docker after the conference
● Anything else on your mind!

My contact information:

scott@cascadia-analytics.com
+1 360-529-2938 (US)
@scottcame on Twitter

mailto:scott@cascadia-analytics.com

